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PROBLEMS OF THE CONCENTRATION OF ELASTIC 
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G .  Y a .  P O P O V  

Odessa 
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A method of rodueing non-axisymmetrie problems of the concentration of stresses near a conical crack or thin conical inclusion 
in the form of a couleaJl shell to a system of one-dimensional integro-differential equations is proposed. For the ease where there 
is torsion of the elastic medium, the exact solution of the corresponding integro-differential equation is obtained, A method of 
computing the quadratures (including singular quadratures) to which these problems roduee is given. There is a fundamental 
difference between this method and those proposed in [1, 2], in which special eases are considered in an axisymmetrie formulation. 
© 1997 Elsevier Seion~e Ltd. All rights reserved. 

1. STATEIVlENT OF T H E  P R O B L E M S  AND R E D U C T I O N  OF T H E  LAMI~ 
E O U A T I O N S  TO H A R M O N I C  E O U A T I O N S  

We consider an mlbounded elastic medium (0 ~< r < **, 0 ~< 0 ~< x, - x  ~< q) ~< x) with a conical defect 
[3, 4], by which we: mean part of  the surface of  a circular cone 

0~<r~<R,  0 = t 0 . - n ~ < q ) < ; t  (1.1) 

where the displacements u, u0, u~ and stresses o0, x~, x0~ have discontinuities of  the first kind. A conical 
crack (cut), for which only the displacements have discontinuities and the stresses are continuous, is a 
special ease. Another special case is a rigid thin conical inclusion, that is, a conical shell with mid-surface 
specified by relaticm (1.1). If this inclusion is assumed to be attached to an elastic medium, the stresses 
will have a discon,tinuity while the displacements remain continuous. All these field components will 
have discontinuith~.s if the defect is a layered inclusion [3, 4]. 

The elastic medium is assumed to be arbitrarily loaded with a static load for which the stress and 
displacement fields are known 

o uoO, o ( 1 . 2 )  

It is required to find the stress and displacement distributions due to this load when the defect (1.1) 
appears in the ela~Itic medium. 

In order to reduce the problem to integral equations, we must [3, 4] construct a discontinuous solution 
of  the Lam6 equations for defect (1.1), or in other words, a solution which satisfies Lamt 's  equations 
everywhere apart from points of the defect (1.2). The jumps of  the given displacements and stresses 
are assigned at those points. A solution of  this kind has been constructed [4] for a specific defect by 
solving Lamd's equations in "Erefftz form. 

For a conical defect it has proved to be more convenient to use a solution of Lamt 's  equations in 
Michel's form [5]. Instead of u, uo, u~, we introduce the functions 

u(r,O,~o) = ru r, u (r,O,~) = rsinOu o, w(r,O,~) = rsinOu~ (1.3) 

and their Fourier transforms 

un(r,O),un(r,O),wn(r,O) i u(r,O,q~),u(r,O,q)),w(r,O,c#)dq~ = , n = 0 , + 1 , + 9  .... 
_~ 2re exp(incp) 

(1.4) 

Michel took the basic unknowns as the function u(r, 0, q)), the volume expansion O(r, 0, q0 and radial 
projection of  the rotation f~(r, 0, 9), with the transforms of the latter related to (1.3) by the formulae 
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r20n = (run )" +(sin 0)-Iv n + in(sin 0) -2 w. (1.5) 

r sin 0£2, = wn - in(sin 0)-1o n (1.6) 

and reduced Lam6's equations [6] 

2ix0r sin 0 0  n - i n ~ ,  + rv "n" - sin Or( r-l u'n )" = 0 

2ixor2inOn + rsin 0£2 n - inr 2 (r- lun) '  +r2wn " = 0 (1.7) 

}-to = (1 - IX)(I - 21.1.) -I 

(IX is Poisson's ratio, the third Lain6 equation is omitted) to the following three separately solvable 
harmonic equations 

= ( r  f ) - V n f ,  V n f = ~ f -  sine 
An f 2 , • n 2 (sin0f') '  

AnU n = 2r2On - (1  - 2IX) -I r3On 

(1.8) 

(1.9) 

Here  and everywhere below the prime denotes the derivative with respect to r, and the dot denotes the 
derivative with respect to 0. 

We can represent the solution of Eq. (1.9) in the form 

u. = u~ + ft. (1.10) 

where u* is a solution of the harmonic equation 

AnuS=O, O<r<** ,  O < O < n  (1.11) 

and un is a particular solution of the equation 

A n f i n = 2 r 2 O n - ( 1 - 2 ~ t ) - l r 3 0 ' n ,  0 < r < ~ ,  0 < 0 < T t  (1.12) 

If On, f~n, Un have been found, we can fred Vn, Wn as follows: we multiply relation (1.5) by sin 0-10/00 
sin 2 0, and relation (1.6) by in(sin 0) -1, and find the difference between the results. This leads to an 
equation from which to find Vn 

-V,,v,, =(sinO) -I {r2(sin2OOn)" + [r(sin2Ou,)']" } - inr~, ,  (1.13) 

The other linear combination of relations (1.5) and (1.6) gives a similar equation from which to find 
w,  

- V  ,,w,, = in[r20,,-  (rUn)'] + r(sinO)-l(sin2Of~,)" (1.14) 

2. T H E  C O N S T R U C T I O N  OF D I S C O N T I N U O U S  S O L U T I O N S  
F O R  T H E  H A R M O N I C  E Q U A T I O N S  

In order to construct the discontinuous solution of Lam6's equations mentioned above, we first need 
to construct discontinuous solutions of the harmonic equations for the defect (1.1). We can use the 
scheme of [3, 4] for this purpose. We will apply the Mellin integral transformations to those equations 
on the right, using the following notation for the corresponding transforms 

o o  

[u,,s,v ns,w.s]= s[un(r'O)'v n(r 'O)'wn(r'O)] dr 
rl-s 0 

~ ..~ = ~ ~'I . ( r, O ) r'~dr, [0..~, o,,.,., x,...,, x¢,~. ] 
0 

(2.1) 
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y[ On(r,O),Oon(r,O),'~rns(r,O),'~ns(r,O)] 
= r_l_ s dr 

0 

and then the Leg¢;ndre integral transformation (P'ff(z) is the adjoint Legendre function) 

0,,,  k = ~O. , (O)~" ) (cosO)s inOdO.  k = 0.1,2 .... (2.2) 
0 

by a generalized scheme [3]. 
As a result, for example, the Mellin transform Ons of the discontinuous solution of the harmonic 

equation for On, (1.8) will be represented in the form 

sin co x ~ d c o "  

Kns(0.co)= ~. (~k,~ "l (cos0)Pk M (cosco), 2 o h  =(k-lnl)t[(k+lnl)q-~(2k+l) (2.3) 
k=l-l k(n+l)-(s+2)(s+l) 

The upper dot is used to denote the Mellin transform of the jump of the normal derivative (to the defect) 
of the functions On(r, 0). 

Using the invers~ion formula for Mellin transforms, from (2.3) we find the actual discontinuous solution 

s,. =iF  o. > ../-" ,o = /<  o. > =11 (2.4) O,(r ,0)  =: 
0L" ~ .  : o,o ~p : j  p 

_ ~. ok. ~,j.j (cosO)~.,  ( cosm~k( t )  @.(t;O, co)-  r~ . l  2 -~-~+ 1 "* 

2k+ l  q'~/" t-(s+i)ds 2k+ 1~/ '*  t-Sds [t', t < l  
• k(t) = -2~--Fq_i..k(k +l)-(s+ 2)(s+l) 2~i cz J-i..k(k + l ) - s ( s - l ) = [  t-k-I, t > l  

Later we will need the limiting values of the discontinuous solution On and its derivative On. We can 
see that the following formula holds 

oL = ~, p )1o_-° 

The formula for O;, has the same structure, except that @n in the integrand must be differentiated 
with respect to 0 and we must put 0 = co. 

The same formulae also hold for ~2,(r, 0) and u*(r, 0), where we only need to replace (0~), (On) by 
(~;~), (f~n) and (u;~),, (un) since, because the particular solution of Eq. (1.12) is continuous, we have (u;,) 
= (uD, (u.) = (Un*). 
The particular solution is constructed by applying the Mellin integral transformation (2.1) and the 

Legendre integral transformation (2.2) to Eq. (1.12). As a result we will find the Mellin transform of 
the solution of Eq. (1.12) into which we substitute expression (2.3), after first replacing the transforms 
of the jumps by the corresponding integrals of the originals and using the orthogonality of the adjoint 
Legendre functions [7]. Subsequent application of the inversion formula for the Mellin transform leads 
to the formula 

![ (r lO°,(r I] ~.(r,O) = sinco (0 ; , )~ .  (2.6) l -2p .  p;Ü'co - (  " ) ~  " p;O.co pap 

,b.(t;o,¢o= ,~. °*"~"l(c°sO)P~"l(c°sco)~*(t) 
k=l,d 2(2k + 1) 

_l(2k+3)-l(B*_k_2)tk+2 +(2k-l)-t(k-~t*)tk, t < l  

~k(t)--[(2k+3)-I(l.t* + k + l ) t  -k-I - ( 2 k - l ) - I ( B  * + k - l ) t  -k+l, t > l ;  ~* =4(1 -~) 
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3. THE CONSTRUCTION OF A DISCONTINUOUS 
SOLUTION OF LAMt~'S EQUATIONS 

We shall assume at a defect that the jumps of the Fourier transforms of the stresses 

{yon(r,o~- 0)-Oon (r,t~ + 0) = ({y0n (r,t.0)) = ({YOn) 

ZOrn( r'{O - O)-'{Orn(r'03+ 0) = ('fOrn(r,03)) = ('{rn) 

XO~ (r, 03 - O) - "Corm (r, CO + O) = ('CO~ (r, CO)) = ('C~) 

(3.1) 

and the displacements 

(un(r,03)) = (un), (vnfr,03)) = (Vn), (wn(r,03)) = (Wn) (3.2) 

are assigned. 
The required discontinuous solution will have been constructed if the jumps (or Fourier transforms 

of the jumps) of the harmonic functions (1.8), (1.1 1) and (2.4) are expressed in terms of the given jumps 
(3.1) and (3.2). 

We do this by using Hooke's law for the stress and displacement fields in a spherical system of 
coordinates [8]. 

Using the above notation and changing to Fourier transforms, we then transfer to jumps (3.1) and 
(3.2), and we have (G is the shear modulus) 

Coon) ii (On)+ (U'n)-ctg03(Vn) (u n) 
2G = I- 2Ix r "~ sin-'-~ + r 2 

(~ r~ ) = G[ r -2 (u~) cosec tar(r -2 (v.)), ] 

('%a) = G( r2 sin2 co) -l [sin 03(w~ ) - 2 cos 03(w n ) + in(v n )] 

(3.3) 

Adding another two equations 

r2(On)=(r(un))'+ (tl'a) + in(wn) (gl.)= (w'n------~) in(tin) 
sin03 sin203 ' rsin03 rsin203 

which follow from (1.5) and (1.6) to these equations, we will find the required relations from the resulting 
system 

(U;,) = G-Ir2 ('frn ) - r3(sin03)-I(r-2 (u ,))" 

r 2 ( O ° " )  + r(u.)'~ c t g 0 3 ( o  . )  + in(w.) 
~t°r2 (On) = 2G sl-n 03 sin 2 03 

(~n) = r ( x~ )  ~ 2ctg03(wn) 2in(On) 
G rsin 03 rsin 2 03 

(3.4) 

It only remains to obtain similar relations for (O'n) and (f~'n)- We find these with relations (1.7). 
Changing to the jumps in the latter and taking (3.5) into account, we obtain 

$t o sin ¢ 0 ( O n )  = - - 1 - + r 2 sin to 

+(2G) -1 [in(z~ ) + sin 03(r(x m ))' ] 

-rsin03(f~) = in(r(un)'+(un))+ r2(wn) " ' -  2n2(wn) 2inctg03 (un) + inr2(UOn) 
sin 2 to + - sm to G 

(3.5) 
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To complete the construction of a discontinuous solution, it remains to solve Eqs (1.13) and (1.14). 
These are simple to solve if we take account of the fact that 

~.l (cosO)pi.~ (cos'O ~l',,(O,x)= ~, oh, 
k= I,,I k(k + I) 

is a fundamental function (fundamental solution) of the given equations. Thus the solutions of the 
equations can be written in the form 

~v.(r,O) 7W ¢O,'c "~ r2(sin2 ~'O,)' +[r(sin 2 ~un)']'-insin'cr2fl, Id ~ 
-Iwn(r,O)l =. ~ "" )linsin.~[r2On _(run),l+r(sin2 fan)• (3.6) 

The resulting formulae have no meaning when n = 0 (axial symmetry). Simpler formulae can be 
obtained in that ease. Putting n = 0 in (1.5) and (1.6) and integrating with respect to 0 (the constant 
of integration turr~; out to be equal to zero because of the meaning of the functious v0, w0), we obtain 

l Iv°(r'O)~=~l r20°-(ru° nsin xa~ 
l.'o(,,o)o 

(3.7) 

Formulae (3.6), (2.4), (1.10) and (3.4), (3.5) give the discontinuous solution of Lam6's equation for 
a conical defect (1.1) with given jumps (3.1) and (3.2). 

4. R E D U C T I O N  OF THE PROBLEM TO ONE-DIMENSIONAL 
I N T E G R O - D I F F E R E N T I A L  EQUATIONS 

It is easy to reduce any problem on stress concentration near a defect (1.1) to one-dimensional integro- 
differential equations, using the discontinuous solution constructed in Section 3. 

In fact it is sufficient to perform the following operations for this purpose. In Fourier transforms, 
the required stress and displacement fields must be represented in the form of two terms 

0 I 0 + ,~1 m '  'Cop n ---- 'C~ + ' ~ a  OOn----OL + O l n  , "Cvn----~rn 

I _ 0 + i 1 1 ,  Wn = O + w l  n u n -~-uOn - I -Un,  Y n - -O n W n 

(4.1) 

(4.2) 

The transforms of the components of the stress and displacement fields marked with a zero are taken 
from the solution (1.2), allowing for (1.3)-(1.6), while those marked with a one are taken from the 
formulae for the discontinuous solution of Lam6's equation given in Section 3 which, in the general 
ease, contains six mxknown jumps (3.1) and (3.2). 

If the nature of the defect is sufficiently general, for example, if there is a fixed thin inclusion [3, 4], 
one edge (side) of which 0 - to + 0 is attached to an elastic medium, while the other 0 = ¢o - 0 has 
become detached and does not interact with the medium, then there are six conditions on the defect 
(1.1) 

_ o ,I,:o_o = -  V"le_-® (4.3) 

- : .I , .+o = - ° . 1 . o ,  - '  - : . :1 , : .+o- -  .I ,: . .  o . L . o - -  .I,:o (4.4) 

Conditions (4.3) ensure that there are no stresses on the detached edge (side) of the inclusion, and 
conditions (4.4) ensure that the inclusion does not move. If these conditions are realized using formulae 
(3.6), (2.4), (1.10) mad (3.4), (3.5), the problem will reduce to a system of six one-dimensional integro- 
differential equatious (el. [3, 4]). 

We will demonstrate the corresponding operations on a defect (1.1) in the form of a crack. In that 
ease the jumps in the stresses (3.1) will be zero, since conditions (4.3) will be satisfied on both sides, 
that is, both when 0 = co + 0 and when 0 = m -  0. Then the three conditions (4.3) need only be satisfied 
relative to the three unknown jumps of displacements (3.2), formulae (3.4) and (3.5) taking a simpler 
form. 
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We will now discuss the method in the axisymmetric ease, that is, when n = 0. Relations (3.4) and 
(3.5) are even simpler in that ease 

r'~ ((Vr~)' ' - - =  ~ + 
(0o) (u ) '  ctgto(u o) 

(u°) = sin"-~ ~t o r 2 sin to 

(~o) = 2ctg(w o) - r  / ( ° ° ) '~  " -  (°°) (4.5) 
r s i n t o '  ~t° (Oh) = si-m-~ \ - ~ j  r2 sin"--~ 

sin to(f~b) = - r ( w o ) ' "  

Conditions (4.3) take the form 

Oio(r, to-O)=-aO(r, to), Zlor(r, to-O)f-Z°r(r ,  to ) 

1;~p(r, to-0)=-X~l~(r, to), 0~< r~< R 

(4.6) 

According to the formulae for the stresses, which are the same as formulae (3.3), from which the symbols 
for the jumps must be removed and in which to must be replaced by 0, and also according to (3.7) 

a~ + [u 0 - (ru0)' ]sin 0 - ctg0u 0 
2G = ~t°O° r 2 sin0 ' 

r r~  =t2o 2ctg0 o ...... f sin x~o  ( r, x )dx 
G sin0 o 

:7+rtT) 
(4.7) 

Hence this problem splits into two problems that can be solved independently of one another: (1) 
the axisymmetric deformation of an elastic medium with unknown jumps (u0) and (v0), determined from 
the first two conditions of (4.6), and (2) the torsion of the elastic medium with unknown jump (w0) 
determined from the last condition of (4.6). 

As an example to show how optimal integro-differential equations are obtained under conditions 
(4.6), we will consider the problem of torsion, or the last condition of (4.6). The key point here is the 
choice of the unknown function. It is this which defines the equation to which the problem reduces. 
The optimal function in this case is the following 

Z(r)  = (wo(r,(O))r -i, supp Z(r) = [0, R] (4.8) 

We will multiply both sides of the last equation from (4.6) by G --1 and for the given right-hand side 
introduce the notation 

r t~ ( r ,  to) = x_(r), suppx_(r)=[O,R]  

Then substituting the expression x ~  from (4.7) into the left-hand side an taking account of formulae 
(2.4), (2.5) and (4.5) for D~(r, 0), using the following, easily verified relations 

02 O ( r ~ -  0 1 . . .o(r  
'tpJ--r 7 't J ' 

~-(k+ 1)t k t < l  
Ok(t )  = t kt-k-I,  t > 1' 

k=0,1 ,2  .... 

r 0 O ( r ]  ( ~ /  O / ( t ) =  ~ k-ltk' t < l  k = 1 , 2  .... 
-~r kt-p)=Ok ' t - ( k + l ) - i t  -k-I, t > l '  

we obtain an integro-differential equation of Wiener-Hopf type 

'~_(r) 
smto X(r )+ r dp= O<~ r ~  R (4.9) G " 

Its kernel is given by the formulae 
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k(t) = k I (t) - 2 ctg ¢ok 3 (t) - 2 ctg co cosec cok 2 (t) + 4 ctg 2 co cosec o~ 4 (t) 

[k I (t),k2(t)] := k~_, ° ~t0(t) 2 t = --'2 --[IPk(c°sco)[ ' Bk(CO)] , [k3(t).k4(t)]= ~. ~[Ak(CO),Ck(CO)]  
k= i  

(4.10) 

[ ° ]d [A,(CO),Ct(CO)]= Pt(cosco), ~sinxPt(cosx) ~--~Pt(cosco) 
0 

fo 

Bt (co) = Pt (cos cO) ~ sin xP k (cos x)dx, dPt (COS co) = pkl (cos co) 
0 do) 

5. T H E  C O N S T R U C T I O N  OF T H E  E X A C T  S O L U T I O N  OF T H E  
I N T E G R O - D I F F E R E N T I A L  E Q U A T I O N  OF T H E  T O R S I O N  

OF AN E L A S T I C  M E D I U M  W I T H  A C O N I C A L  C R A C K  

We will construct the exact solution of Eq. (4.9). Following the procedure of the factorization method 
(see [9], for example) we introduce the additional unknown 

x+(r)= r r ~ ( r ,  co-0) ,  r> R, supp~+(r)=(R,**) (5.1) 

which is the required shear stress on the continuation of  the conical crack (1.1). Adding (5.1) with the 
appropriate multiplier to the right-hand side of  Eq. (4.9), we extend it over the entire axis 0 ~< r < **. 
Then making the replacement r = ~.J~, p = ~R and carrying out a MeUin transformation we obtain a 
Wiener -Hopf  functional equation, given on the imaginary axis 

(5.2) 
Lsmco G 

where 

I 

[X-(s) ,  T-(s)]  = 
0 

T+(s) =~x+(R~)~'~-Id~, Kj(s)=~kj(t)r~-'dt, j = i,2,3,4 
I 0 

K(s) = K I (s) - 2 ctg COK 3 (s) - 2 ctg co cosec co[ K 2 (s) - 2 ctg coK 4 (s)] 

(5.3) 

The minus (plus) i~a the subscript is, as usual, taken to denote that the function is analytic in the fight 
(left) half-plane Re, s ~ 0. In order to solve Eq. (5.2), as we know [9], we must factorize the coefficient 
of  X-(s). In order to do this, we must study the behaviour of  the symbols Kj{s) of  the kernels kj{t) (j = 
1, 2, 3, 4) at infaniql. 

We will begin wJith the symbol KI(s) of the kernel kl(t). We separate out its principal part. Using 
Laplace's asymptotic formula [10] 

l~,(cosco) = 2~(nksin co) -~  cos[(k +~)co - ¼ ~ ] +  0(k-3/2), k ---> .o 

we confirm the validity of the approximate formula 

k,( t )= ~ [P*(c°sc°)]2*~(t)+ ~. l + s i n ( 2 k + l ) c o . ~ ( t )  (5.4) 
k=o 2 t=~+, 210¢sin co 

which will be more exact the larger we take the number k0. The resulting formula shows that the principal 
part of the kernel kl(t) = kl(t) + k*l(t) will be the function 
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2n t -k-I, t > 1 [ ( t -  1)- !, t > lJ (5.5) 

and its symbol will have the form 

- ctg rts • 
K I (s) = 2 sin to + Kt (s), 

K;(s)  = ~l~,'~(sinto[ Pk(c°sto)12(-~ 1) Ak( s ) -  

IPt (costo)l  2 = _= At(s)  (1 - 2s) cosec ¢0 
- )5 F )5 At(s)  = (5.6) 

t=0 2(k + s) k=ko+t cosec(2k + 1)to' 2n(s + k)(s - k - 1) 

and decreases as s -> **. Proceeding in the same way as with other kernels, i.e. identifying their principal 
parts also, taking into account the asymptotic forms 

At( to )=O( l ) ,  Bt(to)=O(k-2), Ct(to)=O(k-I),  k---)~, 

we can see that the remaining symbols Kj(s) (j = 2, 3, 4) decrease as s ---} ** and are given by the formulae 

. ( 2 k  + ! ) ( 1  - s )  
K2(s )=  ~ Bk(to)Ak(s ), A * ~ ( s ) = 2 ( s + k ) ( s _ k  1) 

k=0 

[ K 3 (s),/(4 (s)] = - ~ A; (s)[A t (to), C t (to)] (5.7) 
k=l k (k+ l )  

As we can see, the function to be factorized increases as O(s), s ---> **. We will therefore represent it 
in the form of the product of the function given by the formula 

G(s) = 1 + 2tgns[s -I ctg to - sin tog I (s) + 2 cos toK 3 (s) + 

+2 ctg toK 2 (s) - 4 ctg 2 toK 4 (s)] (5.8) 

which tends to unity as s ---> **, and the function s etg ~ ,  which has the required increase at infinity (its 
faetorization is known, ef. [9], for example). The function (5.8), however, is factorized by the well-known 
formula (e.g. [11, 12]) 

G+(s )=exp[  1 ~ ' lnG(t )  1 + 7--7. J dt , Re s X 0 (5.9) 
L 2~t.4. t - s  

Once the coefficient of  X-(s) in (5.2) has been factorized, the required functions X-(s) and T+(s) 
are easy to find in explicit form by the factorization method of  [9, 12] and, as has been shown [9, p. 58], 
this is best done on Eq. (4.9) with a special fight-hand side, for the case where 

"f_(R~)=~ p, R e p > 0 ,  T~(s)=(s+p) -I (5.10) 

With this approach we obtain the following formula for the shear stresses on the continuation of the 
crack 

im 

Zo~(r, to) = ~ J T- (-p)z~)(r ,o)dp 

Z~'(r,¢O) (R)P 1 ["(p)  TG+(S) (r] -S  ds 
r -I = 2niG+'-~-p)_i.F--~s)~,-RJ s + p '  

r > R (5.11) 

f'+ (s) = F(p~ :g s)F -~ (1 :F s) 
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6. D E R I V A T I O N  OF A F O R M U L A  FOR THE STRESS INTENSITY 
FACTOR. A M E T H O D  OF C O M P U T I N G  Q U A D R A T U R E S  

We will first establish a formula for the shear stress intensity factor 

Np = lim~/21r(r- R)x~)(r,¢o), r--* R (6.1) 

for the special form (5.10) of loading the elastic medium. In order to take the limits, we must pick out 
the principal part of the second integral in (5.11), which has a radical singularity. To do this we must 
take into account that as s -+ oo G+(s) _ 1 tends to zero, and so the principal part is contained in the 
integral 

l i" r(1-s)~-Sds r 

Evaluating the last integral using the theory of residues and using formula 9.131(2) of [7], we can 
write formula (6.1) as 

"4-  

Np= f'+(-p) l im42g(r_R)JP(r / . .  [2 F (-p) o4-<-p)R,--.>,, = (6.2) 

For arbitrary loading, the formula for the stress intensity factor is 

N = lim~/2g(r- R)xo~(r,m), r -* R 

Using the same argument employed to obtain formulae (5.11), we arrive at the equation 

As we see, we need to know the limiting values of the function G+(s) on the imaginary axis 
(Re s = 0). We will find them from (5.9), using the Soldaotskii formula ([12], for instance). Consequently, 
the shear stress in'tensity factor for an arbitrarily loaded elastic medium is given by 

, , ,  7 ::pr_- 7 I" d ]ds 
V R 2rd_ s. %lG(s) L 21li_~. t - s  

(6.3) 

We will use the following method to compute the resulting quadratures, of which one is singular. We 
change the variables 

s = (0 + 1)(0-  1) -l, t = (~ + 1)(~- 1) -1 (6.4) 

which conformally maps the left half-plane of the complex variables s, t onto the unit circle, the imaginary 
axis becoming a circle y of unit radius. We then apply the quadrature formula described and justified 
in [131. Finany we obtain 

2. R(ak) _ r (-1) 
N = E _ _ . 2 o k  

2n+ lk=0a  k - i  L 

[ 1 - o  k ~ g(Zj) (2"C × exp/- : -T: .  ~ 2, ~ i  j 
L4n+2 j=0 xs -ok [ ,  

1 + o~.+l ] × 

J 

=lnG('C+i) 1...~ 
g(x) t . x -1 )x -~ l  



502 G. Ya. Popov 

3 + o  , 

g(q) \ q - l )  ~,2-2o') ~.1-¢~) L ~,o-lJJ l-t~ 

where the points Ok, Xj (j, k = 0, 1, 2 , . . . ,  2n) divide the circle into 2n + 1 equal parts. 
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